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Abstract

The derivation of the Helmholtz theorem of vector decomposition of a three-vector field requires
that the field satisfy certain convergence properties at spatial infinity. This paper investigates if
time-dependent electromagnetic radiation wave fields of point sources, which are of long range,
satisfy these requirements. It is found that the requirements are satisfied because the fields give
rise to integrals over the radial distance r of integrands of the form sin(kr)/r and cos(kr)/r. These

Dirichlet integrals converge at infinity as required.
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1. Introduction

The Helmholtz theorem of vector field decomposition [1-16]
states that a three-vector field F(r, ) (where r contains the
three spatial coordinates and ¢ is the time) that vanishes at
spatial infinity can, under certain conditions, be expressed as
the sum of a gradient and a curl

Vi-F(r', t)
T
1 fd3r’ V' X F(r', t) )
Ir —r'|

where V is the gradient with respect to r (V' is the gradient
with respect to r’). Although the theorem is invariably derived
for time-independent fields [1, 2, 4] it is natural to ask if it can be
extended to time-dependent ones [5, 16-19]. There have been
two approaches to this question. In the first [16-18, 20] the
kernels of the integrals are evaluated at a retarded time. To do
this a time derivative term needs to be added to (1) and it is clear
that assumptions about the field equations that generate the time
dependence of the field have to be made. In the second method
[3, 6-9, 11, 12] the time parameter ¢ is simply included in (1) as
shown. This is valid because, as noted in the next section, the
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derivation of (1) involves only spatial derivatives and these carry
through as before if the time parameter does not change. No
assumption is made about the equations that generate the field.
This method had been used to construct electromagnetic
potentials of relevance to the Aharonov—Bohm effect [12]. The
two approaches have been compared by Woodside [14].
However, the validity of the Helmholtz theorem of the
decomposition of vector fields (1) holds only if the field
possesses certain convergence properties at infinity. The
electromagnetic radiation wave fields E and B generated by
the motion of charges are time-dependent and have leading
terms of long range, which decay slowly at large distances.
This paper investigates if they converge fast enough for (1) to
be valid. In section 2 we review the derivation of the Helm-
holtz decomposition (1) and the convergence properties that
are required. In section 3 we reconstruct the derivation of the
fields for harmonically varying electric dipole and magnetic
dipole radiation as well as those of static fields. In section 4
we investigate if these fields converge fast enough for (1) to
be valid and find that they do (but only just). In section 5 it is
confirmed that two surface integrals required to obtain
expressions for the potentials in terms of their fields [6, 7, 12]
do indeed vanish as needed. In section 6 we recall that the
vector potential can be subjected to an arbitrary gauge
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transformation and consider the conditions that the transfor-
mation needs to satisfy for the Helmholtz decomposition to be
valid for that field. We find that electric dipole radiation of a
point source can be expressed in the Helmholtz form both in
the Lorenz and Coulomb [21, 22] gauges. In section 7 the
results of the paper are summarized.

2. Convergence requirements of the Helmholtz
theorem

The validity of (1) is confirmed either by constructing it from
equation (2) [11] or, more usually, by taking its divergence
and curl and checking for consistency. The latter method is
quicker [2] and we adopt it here. First we take the divergence
of (1). The second term vanishes because the divergence of a
curl is zero. The first term reproduces div F (V - F) by making
use of the standard identity [23]

5(r) = — (1/4m) V> (1/r) (2)

where r is the magnitude Irl of the vector r. Next, we take the
curl of (1). The first term vanishes, and using the vector
identity

VXVXW=-VW+ V(V-W) (3)
with
V'xF
W(r) = —/d" X (r )
r—r

it is seen, using (2), that the first term of the right-hand side of

(3) reproduces curl F (V x F). We need the second term of (3)

to vanish and for this it is sufficient that (V - W) is zero.
Using the relations

V'x F(r’
V. X—(r) =V’><F(r’)-V
Ir — 1| [r —r’|
=—V'XFa) -V ! (®)]
Ir —r’|
and
V' x F(r’'
v | 2220 v Ry - v
r — 1’| r — 1’|
V- V' x F(r
—/() ©6)
[r — 1’|

and remembering that the divergence of a curl vanishes, we
can transform divW into a surface integral evaluated at

infinity
4r r — 1’|

__ 1 s [V’x F(r’):|

4r r —r’|

V.- W(r)

(N

and, as 7" approaches infinity and r remains finite,
v-Wm = - dfasri [VxEGE)] ®

where spherical coordinates {r’, €', ¢’} and vector compo-
nents are used throughout the paper. The surface element is
given by dS’ = #'r"2d€2’, where dS’ is the vector surface area
on the sphere of radius r" directed in the direction of r’ and
d€2’ is the solid angle. If the integral (8) vanishes, the con-
vergence condition will be satisfied. This requires the radial
component of curl F to vanish at infinity faster than 1/r'.
However, each term in (1) must be finite. The first term is

vl /d3’V/ Fahy 1
[r —r'| ¥

3 ’ / 1
x/d‘r[V -F(r)]Vlr

—r/|'

C))

Apart from at singularities of F, places where the integral
over r’ becomes dangerous are at r’ — r and r’ — oo. For the
first we use s=r'—r to get from (9) as s >0

V.F V.F
- i/ A5 = —J/dﬂvfszds%
4z o s 4z “Jo Is|

_ _m/dgrgfds.
4z ~Jo

The integral of the unit vector over solid angle gives zero
so this term gives no problems. If div F is expanded about
r’ =r in a Taylor series, terms proportional to components of s
will appear in the numerator and will give no divergent
behaviour.

As r’ goes to infinity, after taking the gradient, the inte-
gral (9) becomes

(10)

— L/(Pr’v/. F(I")r—z - —
4z [r'| 4z

x /dQ’7 dr' [V F(r'y] .

For this integral to converge at infinity it suffices that

V'’ . F(r’) vanishes at infinity faster than 1/ for all 6,¢'.
Next we consider the second term of (1)

VXE(r) -1

Ir —r’| 47

(1)

12)

X fd3r'[V’>< Fr)|x V
[r —r]

The argument for the behaviour at r’ — r goes as before.
Performing the gradient operation and letting r’ approach
infinity (12) becomes

1 oo
—fd_Q’/ dr [V’ x F(ry] x . (13)
4z
For this integral to converge at infinity it suffices that all
the components of [ V' x F

than 1/7'.

] X T vanish at infinity faster



Phys. Scr. 89 (2014) 065502

A M Stewart

3. Electromagnetic fields

We consider a system of harmonically moving charges close
to the origin of coordinates with total charge ¢ and total
magnetic moment m, and we find the potentials and fields at a
large distance from the charges. The gauge of the scalar
potential V and vector potential A is chosen to satisfy the
Lorenz gauge condition [2]

1oV ~0

V- AM + 55— 14
M+ 35 (14)

and give rise to the four source-free Maxwell equations.
First we consider static fields with potentials obtained

from the electric sources in the standard way [2, 24]

V(r) = q/(4reyr) (15)
A(r)= pym X r/4nr’
= (Iuom/47zr2) {0, 0, sin 9} (16)

with a charge ¢ and a magnetic dipole m directed along the z-
axis at the origin. These potentials also satisfy the Coulomb

gauge condition V - A(r) = 0. From them we obtain
B=VxA

= (ﬂom/4ﬂ'r3) {2cos 6, sin6, 0} (17)
E=— VV - 0A/ot
q
= 1,0,0 18
4ﬂ€0r2 { } (18)
with div B =0, curl B=0, divE=0, curl E=0, and
(VX A) X £ = (ugn/4nr’) {0, 0, —sin0}.  (19)

Next we consider the coordinate dependence of electric
dipole radiation fields. The potentials go as [2]

V(r, t)= (Z_l::)cz(cors 6){ - (%) sin [w(t — r/c)]

+ cos [w(t — r/c)]/r}, (20)
A(r, )= (%)(2) sin [@(t — r/c)]
z)\r
X {—cos 0, sin 6, 0}, 21

with the oscillating electric dipole moment psin[wf] directed
along the z-axis. We drop the terms in the first brackets in (20,
21) for subsequent brevity to get

2

V-A(r):w cos 0

cos [w(t — r/c)]

w cos

s— sin[w(f — r/c)]. (22)
-
The fields, displaying the leading terms in 1/r, are
2 .
B= {0, 0, - (a) S 9] cos [w(t — r/c)]

cr
wsin@y .

- ( 5 ) sin [o (t — r/c)]} (23)

r

E= { - (M) sin [w(t — r/c)],
r

((02 sin @

)COS [@(t —T1/c)], O} (24)

from which we obtain the Poynting vector [2] P=E x B/u

P ~ {w'sin’ Ocos’ [w (t — r/c)]/cr?,

Oo[r7], 0} (25)
Other relations needed are
2 .
VXE= {0, 0, (w sin 9) cos [w(t — r/c)]
r
@’ sin 0
- ( ) sin [ (t — r/c)]} (26)
cr
2
VX B= { - Mcos[a)(t - r/o)],
cr
3 .
“’:2‘:9 sinfw (t — r/c)], 0} @7)
and hence the expressions needed for use in (13)
2 .
(VxA)xt= {0, - [a) sme] cos [w(t — r/c)]
cr
wsin@y .
- ( > )sm [w(t — r/c)], O}, (28)
r
n w” sin 0
(VXE)xt=10, 5 cos [w(t — r/c)]
r
3 .
- (a) S 9) sin [w(t — r/c)], 0}, (29)
cr
w’ sin 0
(VX B)xf'={0, 0, s—cos[w(t — r/c)]
cr
3 .
NI r/c)]}. (30)
cr

Lastly, we consider magnetic dipole radiation [2]. With
the oscillating magnetic dipole m directed along the z-axis,
this gives rise to zero scalar potential and vector potential

m .
A =(ﬁ)w(cos[w(t —rlcyl/r
4r r

— (w/c) sin[w (t —r/c)]) {0, 0, 1} (€28)

We drop the term in the first brackets of (31) for brevity.
The divergence of A is zero. The fields are

B= {—(M) sin [w(t — r/c)],
cr

" sin 6
cr

]cos [w(t —r/c)], 0}, (32)
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2 .
- {0, 0. (“) 0 9) cos [@ (1 — r/c)]}, (33)
cr
P~ {w'sin’d cos’[w(t — r/c)]/c’r’, O[r7’], 0}  (34)
2
VXE= {(2%) cos @ cos [@w(t — r/c)],
cr
0)3
- [T) sin @ sin [w (¢ — r/c)], O} (35)
cr
3 .
VxB= {o, 0, = &Sm0 Gt - r/c)]} (36)
The expressions needed for equation (13) are
(VX A) X f={0, 0, (“’ Smg)sin [(t — /)]
cr
@’ sin @
+ > cos [w(t—1/0)] ¢ (37)
cr

2
(VXE)xft= {0, 0, — (a)_z] sin 6 cos [w (t — r/c)])
cr

3
+ (a)T) sin @ sin [w (t — r/c)] }, (38)
c’r

3 .
w’ sin @

3
cr

(VXB)Xf'={0,— sin[w (t —r/c)]

@’ sin 6

— 5 —cos[w(t —r/c)], O} (39)
cr
None of the potentials or fields depends on the azimuthal
coordinate ¢'.

4. Convergence of the Helmholtz terms

For (1) to be a meaningful representation of the vector field F
the following conditions must be met: the surface integral of
(8) must vanish and the integrals (11) and (13) must converge
at infinity.

For static fields the only term that at first sight is not zero
for (8), substituting F by A, is (17). However this term goes
as 1/r"* and therefore (8) approaches zero at infinity. All three
terms of (11) for A, E, B are zero. Equation (13) using F=A
(19) gives

m 2z F 3 *© ’
Ho 2/ d¢'/ do’ sing//drg{(), 0, —sin 0/}
(4m)"Jo 0 r’

Since the integrand does not depend on ¢’ the integral
over ¢’ gives zero when the ¢’ component of the vector is
projected on the x- and y-axes. The integral over @' is —n/2
and the integral over 7/, being the integral of 1/'%, converges
as r'— oco. Therefore the integral vanishes and so static

(40)

LA computer algebra script to verify these calculations is available from the

author.

electromagnetic fields may be described by the Helmholtz
theorem.

For electric dipole radiation (8) is satisfied for F sub-
stituted by A (23) and by E (26) because the scalar product in
(8) gives zero. Using F=B it gives from (27)

2
V-W(r) = %m#mdﬂ’ cos 0 cos [w (1 — r/c)]/r" (41)

The integral over ¢’ is finite and equal to 2z, the integral
over €', being the integral over " from O to 7 of sin §'cos €,
vanishes and the term in the integrand that depends on 7’
vanishes as r' — o0. Accordingly div W vanishes. Next we
consider the condition that (11) should converge with F
substituted by A (22). This requires the convergence of the
integral

0)2 2r b4
—/ d¢’/ dé’ sin @’ cos &’
C 0 0

y fdr/cos [@(t —r'/c)] Y

r/

(42)

The integral over ¢’ gives 2zcos @' with a vector direc-
tion along the z (9=0) axis. The integral of sin @’ cos®6’ over
6'gives 2/3 and we are left with the radial integral

r/

fdr,cos [w(t—1r'/c)]

= cos (a)t)/ dr’m

sin (kr ) 43)

+ sin (wt) / dr’
where k=w/c. The integrals over r’ are Dirichlet integrals
which both converge at infinity [25]. The sine integrand
converges at zero argument also and gives a finite integral

f“dxsin (kx) _z
0 x 2

(44)

for k> 0 (for k<O the integral is —z/2, for k=0 it is zero [25]).
Convergence condition (11) is therefore satisfied for A. We
note that convergence is only just obtained. In gravitation
theory [26] it is also found that fields that go as exp(igr)/r lead
to convergence but fields that go as 1/r do not. The quantities
div E and div B are zero so the convergence condition (11) is
satisfied for them also.

Next we consider condition (13) for equations (28)—(30).
The angular integrals give a finite value or zero. The leading
term of the radial integrals is a Dirichlet integral that con-
verges as before. So (13) is satisfied and electric dipole
radiation may be described by (1).

The situation is similar for magnetic dipole radiation. The
divergence of W of (8) vanishes for A, E and B because the
radial components of their curls go to zero at least as fast as 1/
2. The divergence of all three vector fields A, E and B is
zero so that the condition (11) is satisfied. For equation (13)
the angular integrals are finite or zero and the leading terms of
the radial integrals are again Dirichlet integrals that converge
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at infinity. Therefore both electric dipole and magnetic dipole
radiation satisfy the convergence conditions required for (1).

5. Vanishing of two surface integrals

Next we examine two surface integrals that are needed for the
derivation of the forms of the Coulomb gauge potentials
expressed in terms of the fields used in [12]. It is possible to
express the well-known expression for the scalar potential [2]

V' -E@',t
V(I‘, t) _ 1 /d3r/ (l‘ ) (45)
4re, [r —r’'|
in the form
E(r', ¢
Vi, =V fd%/# (46)
4r|r — 1’|

This is done by taking the divergence of the expression
E(r', 1) /
and doing a partial integration to get a surface integral that is
required to vanish

[arv [7?;(2; |)] = ff.as'- [—r‘r(ir’?] 47)

From (18), (24) and (33) we find that the radial compo-
nent of E vanishes at least as fast as 1/r'* so the surface
integral (47) vanishes and the derivation of (46) is valid. The
convergence of (45) as 7' approaches infinity at infinity is
assured by div E vanishing at infinity for all source-free fields.
The pole of (46) at r' =r is harmless as shown in section 2.

The validity of the expression for the vector potential
[6, 7, 11]

A n=vx [dr B n (48)

dz|r — 1’|

is verified by taking its curl [7] and using (3). The first term of
(3) gives B(r, 7), the second term gives

B(r',t B(r', ¢
v ey 2SS0y fapy U0 )
dz|r — 1’| 4z|r — 1’|
This becomes the surface integral [7]
B
_ V# as’ - | BOLD (50)
[r — 1’|

From (17), (23) and (32) we find that the radial compo-
nent of B vanishes at least as fast as 1/r'* so the surface
integral (50) vanishes and expression (48) is valid. The con-
vergence of (48) as r’ approaches infinity obtains for the
radiation fields, because, after letting the V act on the 1/I-
r—r'l factor, a convergent Dirichlet integral results.

6. Gauge transformation of the vector potential

If the gauge transformation

A->A'= A+ Vyr, 1 (51

and

VoV =V-— i;((r, 1) (52)
ot
is applied to the vector A and scalar V potentials, with the
scalar gauge function y, then the observable fields E and B are
unchanged [22, 27]. We ask what conditions the gauge
function must satisfy for a transformed vector potential A’ to
still satisfy the conditions required by the Helmholtz theorem.
Conditions (8) and (13) are automatically satisfied by the
change of vector potential AA = Vy (r, t) because the curl of

a gradient is zero. Condition (11) holds providing that

/dQ’/ dr' [V (x', ]

converges as r’ approaches infinity. A gauge function that
satisfies the Laplace equation will satisfy this trivially but
other functions may do so also. This may be also seen from
(1) as its second term is unchanged by a gauge transformation
and the first term leads to condition (53).

The gauge condition used for static fields and for mag-
netic dipole radiation in section 3 satisfies the Coulomb gauge

(53)

condition V - A(r) = 0 as well as the Lorenz gauge condition

(13). The Coulomb gauge is of special interest because it has
a minimum property: namely that the volume integral of A?
over all space is a minimum for this gauge [10, 28]. The
potentials of electric dipole radiation (20, 21) satisfy the
Lorenz gauge condition and it is interesting to consider what
form these potentials take in the Coulomb gauge.

In the Coulomb gauge the scalar potential V¢ of electric
dipole radiation takes the well-known instantaneous form

[6, 22]
PH
V.(r, 1) = (4—;)c

where the electric dipole moment is p sin[w?] directed along
the z-axis. Jackson [22] has shown that the vector potential A,
for electromagnetic radiation has the simple form

,cos 6

sin [wt] (54)

o(r 1) = Z_;/dsr/J(r’, 1) - RIR-J@', O] 55

R
where R=r—-r’, R=IRl and ¢ is the retarded time ¢ =¢— R/c.
The first term on the right-hand side of (55) gives the vector
potential in the Lorenz gauge.
When A, is derived from (54) in the standard way
[2, 24], it comes to

P,
acrn=(52)(%)

X sin [w(t — r/c)]{0, sin 6, 0} (56)

instead of (21) in the Lorenz gauge. To order 1/r (56) satisfies
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V. AC(r) = 0 and so (11) is satisfied. Also, to order 1/r the

fields E and B are the same as in (23) and (24) so (8) and (13)
vanish at infinity. The instantaneous scalar potential varies as
1/r* and so it does not have any effect on E and B to order 1/
r. We find that the vector potential of the radiation fields of
point sources can be expressed in the Helmholtz form both in
the Lorenz and Coulomb gauges.

7. Summary

The derivation of the Helmholtz theorem of decomposition of
a vector field requires that the field satisfy certain con-
vergence properties at spatial infinity. The paper has inves-
tigated if these requirements are satisfied by electromagnetic
radiation wave fields of point sources, which vanish at infinity
but are of long range. It is found that the requirements are
satisfied both for the Lorenz and Coulomb gauges because the
fields give rise to integrals over the radial distance r of inte-
grands of the form sin(kr)/r and cos(kr)/r. These Dirichlet
integrals just converge when integrated to infinity. Since, of
electromagnetic fields, radiation fields are the most slowly
converging at infinity, it follows that the Helmholtz theorem
can be applied to the electromagnetic fields generated by
point sources. It is also found that two surface integrals
needed to derive the electromagnetic potentials in terms of the
fields vanish as required.
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